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Abstract

A Mode I semi-in®nite crack located at the midplane of an elastic layer sandwiched between two identical half-
spaces is considered. The complete stress distribution for the eigenproblem with traction-free crack faces and
loading at in®nity is obtained. The auxiliary problem for a loaded crack is ®rst solved using the Wiener±Hopf

method and an eigensolution is derived by a limiting procedure. The solution is presented in closed form in terms of
double quadratures. Based on an analysis of the stress ®eld the size of the K-dominance zone is determined and
restrictions are established on employing the conventional K-concept. 7 2000 Elsevier Science Ltd. All rights

reserved.
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1. Introduction

Fracture analysis of multilayered bodies incorporating the stress intensity factor approach is
based on the assumption that the size of the inelastic process zone Rp near the crack tip is small
compared to the size of the K-dominance zone RK, de®ned by the crack length, distance from the
crack to the interface and loading length parameter; i.e.

Rp � RK: �1�

Only in this case does the stress-intensity factor approach correspond to the energy release rate
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considerations. A complete review of the crack problems in layered materials formulated in the

framework of this assumption may be found in Hutchinson and Suo (1991).

Advances in modern technology have led to the employing of composite structures including very thin

layers. The thickness of some kinds of coatings and adhesive layers may be of the order of microns.

Therefore, in some cases the relation (1) does not hold and the above K concept fails, as it was noted by

Xu et al. (1993). For su�ciently thin layers this phenomenon may take place even for composites with

brittle constituents such as glass or epoxy which are usually examined in the framework of the stress

intensity factor approach. In such a situation the fracture criterion formulation must be based on more

precise considerations of the stress distribution not restricted by the ®rst square root term. A

Nomenclature

Rp size of the inelastic fracture process zone
RK size of the stress intensity factor dominance zone
j index denoting the layer �j � 1� or the half-plane �j � 2� related quantities
mj shear modulus
nj Poisson ratio
u�j �, v�j � displacements in the x and y directions respectively in the auxiliary problem
s�j �y , t�j �xy stress ®eld components in the auxiliary problem
q�x� loading on the crack faces
l real parameter of the Fourier transform with respect to x
A
�j �
i functions of l to be derived from the solution

M, N, D, ti known functions of l
s, s1 complex variables, Re�s� � l for Im�s� � 0
kj 3ÿ 4nj
m � m2=m1 ratio of the shear moduli of the composite constituents
�s, �v Fourier transforms in the auxiliary problem
s2, v2 factorized transforms
l length parameter describing loading decay rate
b = 1/l
�mj mj=�1ÿ nj �
q0 loading amplitude
G coe�cient of the Wiener±Hopf problem
G 2, G 2

1 , G 2
2 , R2 auxiliary functions analytical in the respective parts of the complex plane s

p arbitrary coe�cient multiplying the eigensolution
ve displacements of the crack faces in the eigenproblem
se stresses in front of the crack in the eigenproblem
s2

e , v2
e factorized transforms of the stresses displacements in the eigenproblem

Kn stress intensity factor corresponding to the near ®eld in the eigensolution
Kf stress intensity factor corresponding to the remote ®eld in the eigensolution
K̂ ratio of the near stress intensity factor to the far one
ŝe non-dimensional stresses in front of the crack
L, L1 contours in the plane of complex variable s
o real parameter de®ning the location of the contour L1

t, r real valued integration variables
fs normalized stresses in front of the crack in the eigenproblem
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corresponding analysis was carried out, for example, by Dyskin (1997) who considered the stipulation
(1) in the context of rock mechanics.

Hence, for the cases when there is danger of violation of relation (1), deriving the size of the K-
dominance zone RK becomes a necessary step in the fracture analysis. Many researchers (Ma and
Freund, 1986; Krishnaswamy et al., 1991; Huang and Gross, 1994) have investigated this issue
analytically and numerically for static and dynamic problems of cracks in homogeneous materials.
Additional references to experimental works may be found in Huang and Gross (1994).

Signi®cantly, few studies are dedicated to the derivation of the K-dominance zone for cracks in
inhomogeneous layered materials. A comprehensive numerical study of the stress ®eld and the K-zone
for the problem of a crack in the midplane of DCB adhesive fracture specimen is presented by Wang et
al. (1978). Analysis of the limitations imposed by the extent of the K-dominance region on the use of the
conventional stress intensity factor approach for the case of the mixed-mode delaminating beam
specimen was carried out by Becker et al. (1997). The authors used ®nite elements to consider interface
cracks for the bilayered and sandwich geometries.

When the crack is su�ciently long and the external loading on a body is smooth, the model of a
semi-in®nite crack with traction-free faces emerges, which provides universal information on the stress
distribution in the crack tip vicinity. Xu et al. (1993) used this model in the problem of an anisotropic
layer delaminating from a dissimilar half-space. The problem of a semi-in®nite Mode III crack
propagating at the interface between a layer and a semi-in®nite substrate was treated by Ryvkin et al.
(1995). In contrast to the previous problem, in the latter case the only loading is the decreasing remote
stresses corresponding to the eigensolution. The analysis of the asymptotic properties of the
eigensolution of this type in the sub-interface crack problems was carried out by Hutchinson et al.
(1987).

The subject of the present paper is to obtain the complete eigensolution and derive the K-dominance
zone for the problem of a semi-in®nite crack in the midplane of an elastic layer sandwiched between two
identical half-spaces (Fig. 1). The analysis of this problem by means of matched asymptotic expansions
for the speci®c case of a layer considerably more compliant than the half-spaces was carried out by
Banks-Sills and Salganik (1994). As was shown by theoretical studies (Fleck et al., 1991) and
experimental investigations (Akisania and Fleck, 1992; Trantina, 1972), the midplane crack location is
one of the possible propagation paths. Consequently, the universal information on the form of the stress
distribution in this case, which will be provided by the eigensolution presented here, is of special
interest.

In the following section the auxiliary problem of a loaded semi-in®nite crack in a sandwich system is
formulated and solved by means of the Wiener±Hopf method. In Section 3 the solution of the auxiliary
problem is used to derive the eigensolution with traction-free crack faces by a limiting procedure. This

Fig. 1. Semi-in®nite Mode I crack in a midplane of an elastic layer sandwiched between two identical half-spaces.
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method for deriving the eigensolutions, suggested by Ryvkin et al. (1995), allows one to obtain the result
in a closed form in contrast to the usually used dislocation approach which is based on a numerical
solution of a singular integral equation (see, for example, Hutchinson et al., 1987; Thouless et al., 1987;
Suo and Hutchinson, 1989; Fleck et al., 1991). At the same time it must be noted that the dislocation
method is more general. The parametric study of the eigensolution presented in Section 4 yields the size
of the K-dominance zone for any given parameter combination.

2. Auxiliary problem

Consider the plane deformation of a bi-material composite body consisting of an elastic layer
sandwiched between two identical elastic half-spaces. A semi-in®nite crack �ÿ1 < x < 0, y � 0� is
located in the midplane of the layer (Fig. 1). Half of the layer thickness h is taken as unity, thus ®xing
the length scale for the analysis. The elastic properties of the composite constituents are de®ned by the
shear moduli mj and Poisson's ratio nj (the value j � 1 corresponds to the material of the layer and j � 2
to the material of the half-spaces). The goal of the present paper is to obtain the speci®c eigensolution,
namely, the solution corresponding to the traction-free crack faces and Mode I opening displacements in
the crack tip vicinity. The possibility to obtain such a solution, i.e., to separate the fracture modes, is
provided by the symmetry of the elastic domain.

In the auxiliary problem the stress state is generated by symmetric transverse opening tractions
applied to the crack faces. Consequently, the deformation in the vicinity of the crack tip will be of the
desired Mode I type. Due to the symmetry of the stress strain ®eld, only the domain y > 0 need be
considered. The boundary value problem for the layer 0 < y < 1 �j � 1� bonded to the half-plane 1 <
y <1 �j � 2� is formulated as given below. The LameÂ ®eld equations with respect to the elastic
displacements u�j ��x, y�, v�j ��x, y� in the x and y directions respectively are

r 2u�j� � 1

1ÿ 2nj
@

@x

 
@u�j�

@x
� @v

�j�

@y

!
� 0 �2�

r 2v�j� � 1

1ÿ 2nj
@

@y

 
@u�j�

@x
� @v

�j�

@y

!
� 0, j � 1, 2: �3�

At the interface between the layer and the half-space the components of the stress strain ®eld satisfy the
continuity conditions

u�2��x, 1� ÿ u�1��x, 1� � 0, �4�

v�2��x, 1� ÿ v�1��x, 1� � 0, �5�

s�2�y �x, 1� ÿ s�1�y �x, 1� � 0, �6�

t�2�xy �x, 1� ÿ t�1�xy �x, 1� � 0, �7�

and at the crack plane the mixed boundary conditions are
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t�1�xy �x, 0� � 0, ÿ1 < x <1, �8�

v�1��x, 0� � 0, 0 < x <1, �9�

s�1�y �x, 0� � q�x�, ÿ1 < x < 0: �10�

Here q�x� < 0 is some known function de®ning the applied loading which is assumed to be localized in
the vicinity of the crack tip. To complete the formulation of the boundary problem it is assumed that
the local strain energy is bounded and that the stresses vanish at in®nity:

s�j�y �x, y�, s�j�x �x, y�, t�j�xy�x, y�40, x 2 � y2 4 1: �11�

The method for handling problem (2)±(11) using the Wiener±Hopf technique is straightforward. The
displacements satisfying Eqs. (2) and (3) are represented in terms of the Fourier integrals,

f�x, y� � 1

2p

�1
ÿ1

�f�l, y�eÿilxdl �12�

It is convenient to represent them for the layer and the half-plane in the following slightly di�erent
forms (see, for example, U¯yand, 1968):

2m1u
�1��x, y� � i

2p

�1
ÿ1

h
A
�1�
1 c� A

�1�
2 s� ly

�
A
�1�
3 c� A

�1�
4 s
�i

eÿilx dl, �13�

2m1v
�1��x, y� � 1

2p

�1
ÿ1

h
ÿ A

�1�
1 sÿ A

�1�
2 c� A

�1�
3 k1c� A

�1�
4 �k1sÿ lyc�

i
eÿilx dl, �14�

2m2u
�2��x, y� � ÿi

2p

�1
ÿ1

�
A
�2�
1 � A

�2�
2 ly

�
eÿjljyÿilx dl, �15�

2m2v
�2��x, y� � 1

2p

�1
ÿ1

�
A
�2�
1

jlj
l
� A

�2�
2 �k2 � jljy�

�
eÿjljyÿilx dl: �16�

where c � cosh�l�yÿ 1��, s � sinh�l�yÿ 1��, kj � 3ÿ 4nj, j � 1, 2 and A�j �r , r � 1, 2, 3, 4 are eight
unknown functions of l to be determined from the boundary conditions. In the expressions for the half-
plane (15), (16) two of these functions A

�2�
3 and A

�2�
4 , being coe�cients associated with the increasing

exponentials, are equated to zero in accordance with the decreasing condition, viZ Eq. (11). Substituting
Eqs. (13)±(16) into the ®ve boundary conditions (4)±(8) by the use of the Hooke's law, one can express
the remaining six functions and, consequently, the stress and displacements Fourier transforms in terms
of one function, A

�1�
3 : In particular, at the crack plane, we have

�s�l, 0� � M�l�
D�l�A

�1�
3 , �v�l, 0� � N�l�

D�l�A
�1�
3 �17�

where

M�l� � l2

2

��mÿ 1�t1 � 8m�1ÿ n1��n2 ÿ mn1 � � t2cosh 2l� 2t3sinh 2jlj�, �18�
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N�l� � �1ÿ n1�jlj
2m1

�
2l�mÿ 1��m� k2� ÿ 2t3cosh 2lÿ t2sinh 2jlj�, �19�

D�l� �
ÿ
l2t4 ÿ jljt3

�
cosh l� t5lsinh l �20�

where

t1 � 5mÿ 4mn1 � 2l2�m� k2� � k2, t2 � k2 � m2k1 � 2m�1ÿ 2n1��1ÿ 2n2 �, t3 � 4m�1ÿ n1��1ÿ n2�,
t4 � 2m�1ÿ 2n2� � m2 ÿ k2, t5 � 2mn1�1ÿ n2� ÿ m2�1ÿ n1 � ÿ k2,

and

m � m2
m1

�21�

is the shear moduli ratio of the layers.
Let us now consider the variable l as being the real part of a complex variable s and split the

transforms (17) into `+' and `ÿ' functions which are regular in the upper Im�s�r0 and lower Im�s�R0
half-planes respectively. Namely, for Im�s� � 0,

�sy�l, 0� � s��s� � sÿ�s�, �22�

�v�l, 0� � v��s� � vÿ�s�: �23�
Employing the mixed boundary conditions (9) and (10), one obtains the Wiener±Hopf equation

s��s� � G�s�vÿ�s� ÿ sÿ�s�, s 2 L, �24�
where

s��s� �
�1
0

sy�x, 0�eisx dx �25�

is the transform of the stresses in front of the crack, and where

vÿ�s� �
�0
ÿ1

v�x, 0�eisx dx �26�

is the transform of the crack opening displacements. The contour L is located on the real axis Im�s� � 0,
and the coe�cient of the problem, G�s�, is given by

G�s� � M�s�
N�s� : �27�

Finally, the function sÿ�s� is de®ned by the applied loading

sÿ�s� �
�0
ÿ1

q�x�eisx dx: �28�

As will be discussed later, the ®nal result, i.e. the eigensolution, is independent of the speci®c form of
the loading in the auxiliary problem; hence a decaying loading q�x� may be chosen for reasons of
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convenience. Taking

q�x� � ÿq0exp�x=l�, �29�
where l is a length parameter describing the loading decay rate, one obtains

sÿ�s� � ÿ q0
b� is

, b � 1

l
: �30�

The solution of Eq. (24) will be obtained as in Ryvkin et al. (1995). The behavior of the even function
G�l� for small and large l is de®ned by the elastic properties of the half-space and the layer respectively;
namely,

G�l�0ÿ �mjjlj, �mj �
mj

1ÿ nj
, �31�

where j � 1 for l41 and j � 2 for l40: Consequently, the factorization of the function G�l�

G�s� � G ��s�
G ÿ�s� , s 2 L, �32�

by the use of the Cauchy type integral (see Gakhov, 1966) is given by

G 2�s� � G 2
1 �s�G 2

2 �s� �33�

G �1 �s� �
������������
s� i0
p

, G ÿ1 �s� � ÿ
1

�m1
������������
sÿ i0
p , �34�

G 2
2 �s� � exp

�
1

2pi

�1
ÿ1

ln G2�t�
tÿ s

dt
�
, �35�

where

G2�t� � ÿG�t�
�m1jtj

: �36�

Here the expressions s� i0 and sÿ i0 in Eq. (34) are to be interpreted as that branch cut for the
function

��
s
p

which is taken along the negative and positive imaginary axes, respectively. From Eqs. (18),
(19), (27) and (31) it follows that the function G2�t� is positive, has a derivative, and tends to unity for
jtj41 (The ®rst property was veri®ed numerically for all considered parameter combinations).
Therefore the index of this function on the contour L is equal to zero and the representation equation
(35) is correct.

Employing the above result makes it easy to factorize the inhomogeneous equation (24). Applying
then the generalized Liouville theorem and using the assumption that the local strain energy is bounded,
one obtains the solution of the inhomogeneous problem in the following form:

s��s� � ÿR��s�G ��s�, �37�

vÿ�s� � Rÿ�s�G ÿ�s�, �38�
where
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R��s� � iq0
sÿ ib

�
1

G ��s� ÿ
1

G ��ib�
�

�39�

Rÿ�s� � iq0
�sÿ ib�G ��ib� : �40�

Hence, the formulas (13)±(22), (27), (30), (33)±(40) present the closed form solution for the auxiliary
problem of a crack subjected to the exponentially decaying loading.

3. The eigensolution

In order to obtain the eigenproblem from the auxiliary one we will follow the way employed by
Ryvkin et al. (1995), namely, we assume that

q0 � p��
l
p , �41�

where p is an arbitrary constant having the dimensions of stress intensity factor and consider the limit as
l41: Then, in accordance with Eq. (29), the crack faces become traction-free but the stress and strain
®elds do not degenerate to zero. This limiting distribution, proportional to p, which may be viewed as
generated by the remote stresses applied at in®nity corresponds to the eigenproblem. Consequently, the
solution of the auxiliary problem yields the eigensolution; in particular,

lim
l41

v�x, y� � ve�x, y�: �42�

Hereafter, the subscript e denotes the eigensolution. The expressions for the displacements and stress
transforms for the eigensolution are derived from Eqs. (37)±(40). Using Eq. (41) and taking the limit for
b40 (recall, that b � 1=l� one obtains after some manipulations

s�e �s� �
p

G �2 �0�
exp

�
i
p
4

�
G �2 �s�������������
s� i0
p , �43�

vÿe �s� � ÿ
p

�m1G
�
2
�0�exp

�
i
p
4

�
G ÿ2 �s�
�sÿ i0�3=2

, �44�

where the functions G 2
2 �s� are de®ned by Eq. (35). Since for the eigenproblem sÿe �s� � v�e �s� � 0, the

stress distribution in front of the crack tip and the crack opening displacements are expressed by the
inverse Fourier transform integrals as following�

se�x�
ve�x�

�
� 1

2p

�1
ÿ1

�
s�e �s�
vÿe �s�

�
exp� ÿ isx� ds: �45�

The de®nitions se�x� � sye�x, 0� and ve�x� � v�x, 0� have been adopted hereafter for brevity. Note, that
from Eqs. (43)±(45) it follows that the eigensolution includes an arbitrary multiplier p de®ning its
amplitude. Another important remark is that the layer thickness is the only length parameter and,
consequently, the only possible length scale for this solution.

The near and far ®eld solutions for the eigenproblem can be derived from result obtained by the usual
methods. The asymptotes for the displacements and stresses for x40 and x41 are de®ned by the
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asymptotic behavior of their transforms (43), (44) for large and small jsj, respectively. For jsj 4 1 in
the respective half-planes we have

s�e �s�0
p

G �2 �0�
� ÿ is�ÿ1=2 �46�

and

vÿe �s�0
p

�m1G
�
2
�0� �is�

ÿ3=2
, �47�

Consequently, the near asymptotes are found to be

s�x�0p

���������
�m1
p �m2

s
x ÿ1=2 for x 4 � 0 �48�

and

v�x�0 2p������������
�m1 �m2p

p � ÿ x�1=2 for x 4 ÿ 0: �49�

The far ®eld asymptotes in the eigenproblem, in contrast to the auxiliary one, are also de®ned by the
same square root functions multiplied by the di�erent coe�cients. In fact, based on the asymptotic
behavior of the transforms for small s,

s�e �s�0p� ÿ is�ÿ1=2, Im�s� 4 � 0, �50�

vÿe �s�0
p

�m2
�is�ÿ3=2, Im�s� 4 ÿ 0, �51�

one obtains

se�x�0 p���
p
p x ÿ1=2, x 4 �1, �52�

and

ve�x�0 2p��������
�m2p

p � ÿ x�1=2, x 4 ÿ1, �53�

The near and far stress intensity factors Kn and Kf are de®ned by the relations

Kn � lim
x40

��������
2px
p

se�x�, �54�

Kf � lim
x41

��������
2px
p

se�x�, �55�

and the asymptotes (48) and (52) yield
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Kn � p

��������
2

�m1
�m2

s
, Kf � p

���
2
p
: �56�

Since, as noted, the eigensolution includes an arbitrary multiplier, the information on the stress
distribution in front of the crack is provided not by the magnitudes of the stress intensity factors but by
their ratio

K̂ � Kn

Kf

�
������
�m1
�m2

s
: �57�

For the problem of a su�ciently long uniformly loaded crack of length l in the midplane of a sandwich
composite, this ratio clearly will express the relation between the near ®eld �x� h� and the far ®eld
�h� x� l � stress intensity factors. An alternative more simple method to obtain Eq. (57) is to equate
the energy release rates calculated in terms of the near and remote ®elds as was done Fleck et al. (1991).
However, it should be noted that this method yields only a relation between the asymptotes of the
eigensolution but not lead to a determination of the complete stress distribution as obtained in the
present work. Another way to derive Eq. (57), based on the asymptotic approach, was employed by
Banks-Sills and Salganik (1994). The existence of the two stress intensity factors depending upon the
scale of consideration has been clearly illustrated by Erdogan and Ozturk (1992).

The method of deriving the eigensolution used in the present paper may raise a question on its
dependence upon the speci®c loading adopted in the auxiliary problem. The absence of this dependence
follows from the uniqueness of the Mode I eigensolution for the considered layered body with a semi-
in®nite crack. The formal proof of the uniqueness is based on the standard use of the Kirchho� theorem
in conjunction with some reasonable assumptions regarding the behavior of the solution near the crack
tip and at in®nity.

4. Numerical results

In this section the stress distribution in front of the crack in the eigensolution is investigated, and the
size of the K-dominance zone for the near stress intensity factor is determined. To study an
eigensolution one must choose the reference point. In the case considered, as in Ryvkin et al. (1995), it
is plausible to assume that the far ®eld characterized by the stress intensity factor Kf (see Eq. (55)) is
®xed. Consequently, noting that for the formulation considered in the present problem with
dimensionless length units, stress intensity factor has dimensions of stress, the non-dimensional stress is
de®ned as follows:

ŝe�x� � se�x�
Kf

: �58�

The evaluation of the function ŝe�x� which is expressed, in accordance with Eqs. (35), (43) and (45), by
a double integral with in®nite limits poses some numerical problems. The inner Cauchy type integral
equation (43) converges exponentially, since, as follows from Eqs. (18), (19), (27) and (36),

G2�t�01�O
�
exp� ÿ 2jtj�� for jtj 4 1, �59�

where O represents the order of magnitude. On the other hand, in the outer integral, for the large jsj,
the integrand behaves as O�sÿ1=2exp�isx�� and the calculations present severe di�culties. In order to
improve the convergence of the outer integral the integration path is deformed from the real axis to the
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lower half-plane Im�s�R0 using the Cauchy theorem. Then employing the symmetric properties of the
integrand and applying the homogeneous Wiener±Hopf equation

s�e �s� � G�s�vÿe �s�, s 2 L, �60�

to carry out analytical continuation through the real axis, one obtains

ŝe�x� � 1

p
Re

� �
L1

G�s�vÿe �s�exp� ÿ isx� ds

�
, s 2 L1: �61�

Here the contour L1 is a ray s � r exp�ÿio�, 0RrR1: The ray direction, de®ned by the value of o > 0,
is chosen using the same reasoning as in Ryvkin et al. (1995). Consequently, for a large jsj � r, the
integrand of the outer integral in Eq. (61) decays exponentially as O�rÿ1=2exp�ÿrx sin o�� making the
numerical procedure of the stress evaluation considerably more e�ective. For all the material parameter
combinations considered it was found that in order to get a precision to three signi®cant ®gures, it is
possible to replace the in®nite integration regions in the inner and outer integrals by the intervals
ÿ6 < t < 6 and 0 < r < 100, respectively.

The non-dimensional stress ŝe is seen to be a function of the four non-dimensional parameters,
namely

ŝe � ŝe�m, x, n1, n2�: �62�

Recall that m � m2=m1 and all the length quantities are normalized by equating half of the cracked layer
thickness h to unity. The graph of the function ŝe�x� for m � 10, n1 � 0:35 and n2 � 0:3 is exhibited in
Fig. 2(a) and (b) in di�erent scales. The plot of the eigensolution is shown as the solid line. The di�erent
dashed lines indicate the near and far square root asymptotes. In accordance with Eqs. (56)±(58) they
were found to be

ŝe�x�0 K̂��������
2px
p , for x 4 0, �63�

and

ŝe�x�0 1��������
2px
p , for x 4 1: �64�

In the case considered, m � 10, the layer is more compliant than the half-spaces. From Eqs. (31) and
(57) it follows that for this case K̂ < 1 and the graph of the far asymptote is located above the graph for
the near one in agreement with the known elastic stress shielding e�ect. In accordance with this e�ect,
observed for the di�erent sandwich systems considered by Wang et al. (1978) and Fleck et al. (1991), for
the given remote loading the stresses in the vicinity of the crack tip in a compliant layer are diminished
in comparison to the case of a crack in a homogeneous material. In Hutchinson and Suo (1991) it was
noted that if ¯aws controlling the strength of the composite are much smaller than the layer thickness
the shielding e�ect is reduced. In the context of the present study it must be added that for the second
limiting case of a large ratio of the crack length to the layer thickness, the shielding e�ect may also be
less pronounced. This situation appears when the layer thickness is not small with respect to the fracture
process zone. Consequently, the stresses in the crack tip vicinity involved in the fracture criterion
formulation may be essentially higher than predicted by the near asymptote (see Fig. 2(a)).

Fig. 2(b) shows that in contrast to the near asymptote the far one is approached from above, i.e., the
region where the stress is diminished with respect to the case of a crack in a homogeneous body is
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followed by the region where it is enlarged. This phenomenon is backed up by the relation�1
0

�
ŝe�x� ÿ 1��������

2px
p

�
dx � 0 �65�

which is obtained from the equilibrium condition of the domain y > 0: The region of switching from the
near to the far asymptote is characterized by relatively small stress variations (see Fig. 2(a)). The results
exhibited in Fig. 3 show that when the rigidity of the half-spaces increases the stress in this region tends
to attain a constant value. (The limiting distribution corresponds to the problem considered by Knauss
(1966) of a cracked layer with the clamped boundaries which are displaced normal to the crack.) This
feature of the stress distribution in the switching region was employed in the asymptotic analysis
presented by Banks-Sills and Salganik (1994).

The dependence of the stress distribution upon the Poisson ratio of the layer is illustrated in Fig. 4.
Three values of n1 � 0:2, 0:35, 0:5 for the composite with m � 30 and n2 � 0:3 are examined. As
expected, the Poisson ratio scarcely a�ects the stress ®eld. Only for the limiting case of an
incompressible material n1 � 0:5 is a signi®cant di�erence from the cases with moderate values of n1

Fig. 2. Non-dimensional stresses in front of the crack ŝe�x� for the eigensolution using ®ne (a) and coarse (b) scales. The near and

the far square root asymptotes are shown by dashed lines. The composite with shear moduli ratio m � m2=m1 � 10 and Poisson

ratios n1 � 0:35, n2 � 0:3 is considered.
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observed. For this case, the general form of the stress curve with a weak minimum is in agreement with
the distribution obtained by Knauss (1966).

For further analysis of the stress distribution for small and large x, it is convenient to eliminate the
square root singularity. De®ning the normalized quantity as

fs�x� �
��������
2px
p

ŝe�x� �66�
and introducing a new variable s1 � s=x, one obtains a convenient formula

fs�x� �
���������
�m1
p �m2

s
Re

" �
L1

G ÿ2 �s1=x�G2�s1=x�
exp

�
i�p=4ÿ s1�

���������������
s1 ÿ i0
p ds1

#
: �67�

In Fig. 5(a) and (b) the normalized stresses distributions for the elastic shear moduli ratios m � 2, 5, 30,

Fig. 3. In¯uence of the shear moduli ratio m � m2=m1 of the composite constituents on the stress distribution in front of the crack

in the eigensolution for typical values n1 � 0:35 and n2 � 0:3:

Fig. 4. In¯uence of the cracked layer Poisson ratio on the stress distribution in front of the crack for a composite with m � 30 and

n2 � 0:3:
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100 are exhibited. The Poisson ratios are taken as n1 � 0:35 and n2 � 0:3 for all cases. The near and far
asymptotes (63) and (64) correspond now to the horizontal straight lines.

For x41, all the curves approach the far asymptote fs�x� � 1 corresponding to the degenerate case
of identical materials of the layer and the half-spaces. The region of validity of this asymptote is seen to
decrease with increasing mismatch of the elastic properties of the sandwich constituents. At the same
time it should be noted that the speci®c form of the curves fs�x� with a weak maximum may cause this
decrease to become non-monotonic for some ranges of m:

The behavior of the stresses in the crack tip vicinity de®ning the size of the K-dominance zone, i.e.,
the region of validity of the near asymptote (63), is of particular interest. From Eqs. (64), (57), (58) and
(66) it follows that

lim
x40

fs�x� �
������
�m1
�m2

s
: �68�

Hence, in accordance with Eq. (31), the level of stresses in the crack tip vicinity is strongly dependent
upon the shear moduli ratio m: At the same time, from Fig. 5(b) it is seen that the in¯uence of this
parameter on the derivative of the function fs�x� near the point x � 0 is insigni®cant. Consequently, the

Fig. 5. Normalized stress distribution fs�x� �
��������
2px
p

ŝe�x� in the eigensolution using coarse (a) and ®ne (b) scales showing the in¯u-

ence of the shear moduli ratio m � m2=m1 for a composite with n1 � 0:35, and n2 � 0:3:
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distance from the crack tip at which a speci®ed stress deviation from the near asymptote occurs is not
sensitive to m: The same e�ect was observed by Wang et al. (1978) based on a ®nite element analysis of
a double-cantilever sandwich specimen.

The graphical results illustrating the dependence of the size of the K-dominance zone RK upon the
shear moduli ratio are exhibited in Fig. 6 (Recall, that all the length quantities in the problem are
measured in units of half of the cracked layer thickness). The value RK for each material parameter
combination was derived numerically from the condition of 5% relative discrepancy between the stress
ŝ�x� and its near asymptote. In terms of the function fs, this condition is given as

fs�RK � � 1:05fs�0� �69�
The monotonic shrinking of the K-dominance zone with the increasing dissimilarity of the materials is

observed. A steep decreasing for 1 < m < 10 is followed by the region where RK is approximately
constant and equal to 0.03. A comparison of the two curves for di�erent sets of Poisson ratio indicates
that the in¯uence of these parameters on the size of the K-dominance zone is limited. Consequently, the
result obtained, namely that the size of the K-dominance zone in front of the crack is equal to 1.5% of
the cracked layer thickness, is valid for any materials combination if their properties are not too close to
each other. This result is also in a good agreement with the data reported by Wang et al. (1978). For
the sandwich composite considered in that work the corresponding size, calculated on the basis of a
10% relative stress variation, was found to be 2.5%.

5. Summary

The stress state in the problem of a semi-in®nite Mode I midplane crack in a layer sandwiched
between two identical half-spaces is investigated by means of the corresponding eigensolution. The
eigensolution is obtained in a closed form convenient for calculations. A complete stress distribution
having the near and the remote square root asymptotes is derived. Since the cracked layer thickness is
the only length parameter of the eigenproblem, the solution obtained provides a universal information
on the stress distribution near the tip of a su�ciently long crack in a sandwich composite.

The numerical evaluation of the solution for the case when the layer is more compliant than the half-
spaces led to a determination of the exact size RK of the K-dominance zone. It appears that if the shear
moduli ratio of the composite constituents is more than 10, this size becomes roughly the same for any

Fig. 6. Non-dimensional size of the K-dominance zone RK vs. shear moduli ratio of the composite constituents for two Poisson

ratio combinations: n1 � 0:35, n2 � 0:3 (solid line) and n1 � 0:45, n2 � 0:3 (dashed line).
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set of materials. Calculated for the 5% relative stress variation, RK is found to be about 1.5% of the
layer thickness. Consequently, in the case of thin layers the K-concept may become invalid even for
brittle adhesives. In fact, in accordance with the results obtained here, the actual size of the K-
dominance zone for a 50mk thickness epoxy adhesive is 0:75mk, which is less than the magnitude of the
process zone Rp � 5mk given in the literature (see Fleck et al., 1991). Incorporating the dynamic e�ects
in the analysis will lead to further reduction of the K-dominance zone and restrictions on employing the
conventional K-concept.
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